The Absolute Arithmetic and Geometric Continual Philip Ehrlich

نویسنده

  • Philip Ehrlich
چکیده

The Absolute Arithmetic and Geometric Continua Author(s): Philip Ehrlich Source: PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association, Vol. 1986, Volume Two: Symposia and Invited Papers, (1986), pp. 237-246 Published by: The University of Chicago Press on behalf of the Philosophy of Science Association Stable URL: http://www.jstor.org/stable/192803 Accessed: 17/07/2008 14:07

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note on the First Geometric-Arithmetic Index of Hexagonal Systems and Phenylenes

The first geometric-arithmetic index was introduced in the chemical theory as the summation of 2 du dv /(du  dv ) overall edges of the graph, where du stand for the degree of the vertex u. In this paper we give the expressions for computing the first geometric-arithmetic index of hexagonal systems and phenylenes and present new method for describing hexagonal system by corresponding a simple g...

متن کامل

Some remarks on the arithmetic-geometric index

Using an identity for effective resistances, we find a relationship between the arithmetic-geometric index and the global ciclicity index. Also, with the help of majorization, we find tight upper and lower bounds for the arithmetic-geometric index.

متن کامل

On Third Geometric-Arithmetic Index of Graphs

Continuing the work K. C. Das, I. Gutman, B. Furtula, On second geometric-arithmetic index of graphs, Iran. J. Math Chem., 1(2) (2010) 17-28, in this paper we present lower and upper bounds on the third geometric-arithmetic index GA3 and characterize the extremal graphs. Moreover, we give Nordhaus-Gaddum-type result for GA3.

متن کامل

On Second Geometric-Arithmetic Index of Graphs

The concept of geometric-arithmetic indices (GA) was put forward in chemical graph theory very recently. In spite of this, several works have already appeared dealing with these indices. In this paper we present lower and upper bounds on the second geometric-arithmetic index (GA2) and characterize the extremal graphs. Moreover, we establish Nordhaus-Gaddum-type results for GA2.

متن کامل

The second geometric-arithmetic index for trees and unicyclic graphs

Let $G$ be a finite and simple graph with edge set $E(G)$. The second geometric-arithmetic index is defined as $GA_2(G)=sum_{uvin E(G)}frac{2sqrt{n_un_v}}{n_u+n_v}$, where $n_u$ denotes the number of vertices in $G$ lying closer to $u$ than to $v$. In this paper we find a sharp upper bound for $GA_2(T)$, where $T$ is tree, in terms of the order and maximum degree o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007